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The data explosion and possible solutions

The data explosion

By 2017, there will be1

13× more mobile data traffic than in 2012

10, 000, 000, 000 connected devices

2/3 of the total traffic generated by mobile video streaming and communications

Network densification is today the only answer to the capacity crunch

Small cells : Area spectral efficiency scales linearly with the cell density

Massive MIMO : Interference can be almost entirely eliminated

Both approaches can significantly reduce the radiated power

Mobility is not anymore limited by coverage but rather by battery life.

1
Source: Cisco, Yankee
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Massive MIMO versus Small Cells

From a coverage as well as area spectral efficiency point of view, one should
distribute the antennas as much as possible.2

However, with small cells deployed below the roof tops, it is difficult to

I ensure coverage

I support highly mobile UEs

But, massive MIMO is particularly suited to

I ensure coverage

I support highly mobile UEs

Can we integrate the complementary benefits of both?

2
H. S. Dhillon, M. Kountouris, and J. G. Andrews, “Downlink MIMO hetnets: Modeling, ordering results and performance analysis,”

IEEE Trans. Wireless Commun., 2013, submitted. [Online]. Available: http://arxiv.org/abs/1301.5034.
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A two-tier network architecture

Massive MIMO base stations (BS) overlaid with many small cells (SCs)
BSs ensure coverage and serve highly mobile UEs
SCs drive the capacity (hot spots, indoor coverage)

Intra- and inter-tier interference is the main performance bottleneck.

There are many excess antennas in the network which should be exploited!
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The essential role of TDD

A network-wide synchronized TDD protocol and the resulting channel reciprocity have
the following advantages:

The downlink channels can be estimated from uplink pilots.

→ Necessary for massive MIMO

Channel reciprocity holds for the desired and the interfering channels.

→ Knowledge about the interfering channels can be acquired for free.

TDD enables the use of excess antennas to reduce intra-/inter-tier interference.
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An idea from cognitive radio

1 The secondary BS listens to the transmission from the primary UE:

y = hx + n

2 ...and computes the covariance matrix of the received signal:

E
[
yyH
]

= hhH + SNR−1I
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An idea from cognitive radio

3 With the knowledge of the SNR, the secondary BS designs a precoder w which is
orthogonal to the sub-space spanned by hhH.

4 The interference to the primary UE can be entirely eliminated without explicit
knowledge of h.
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Translating this idea to HetNets

Every device estimates its received interference covariance matrix and precodes (partially)
orthogonally to the dominating interference subspace.

Advantages

Reduces interference towards the directions from which most interference is received.

No feedback or data exchange between the devices is needed.

Every device relies only on locally available information.

The scheme is fully distributed and, thus, scalable.
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and many more...
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Comparison of duplexing schemes and co-channel deployment

time

fr
e
q
u
e
n
cy

SC UL

SC DL

BS DL

BS UL

FDD TDD

SC DL

BS DL

SC UL

BS UL

time

fr
e
q
u
e
n
cy

co-channel TDD

SC DL

BS DL

SC UL

BS UL

time

fr
e
q
u
e
n
cy

co-channel reverse TDD

SC UL

BS DL

SC DL

BS UL

time

fr
e
q
u
e
n
cy

FDD: Channel reciprocity does not hold

TDD: Only intra-tier interference can be reduced

co-channel (reverse) TDD: Inter and intra-tier interference can be reduced
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TDD versus reverse TDD (RTDD)

Order of UL/DL periods decides which devices interfere with each other.

The BS-SC channels change very slowly. Thus, the estimation of the covariance
matrix becomes easier for RTDD.
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System model and signaling

Each BS has N antennas and serves K single-antenna MUEs.

S SCs per BS with F antennas serving 1 single-antenna SUE each

The BSs and SCs have perfect CSI for the UEs they want to serve.

Every device knows perfectly its interference covariance matrix and the noise power.

Linear MMSE detection at all devices

The BSs and SCs use precoding vectors of the structure:

w ∼
(
PHHH + κQ + σ2I

)−1

h

I h channel vector to the targeted UE
I H channel matrix to other UEs in the same cell
I P, σ2: transmit and noise powers
I Q interference covariance matrix
I κ: regularization parameter (α for BSs, β for SCs)

About the regularization parameters

For α, β = 0, the BSs and SCs transmit as if they were in an isolated cell, i.e., MMSE
precoding (BSs) and maximum-ratio transmissions (SCs). By increasing α, β, the
precoding vectors become increasingly orthogonal to the interference subspace.
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Numerical results

1000 m

111 m

SC SUEMUEBS

40 m

3× 3 grid of BSs with wrap around

S = 81 SCs per cells on a regular grid

K = 20 MUEs randomly distributed

1 SUE per SC randomly distributed on
a disc around each SC

3GPP channel model with path loss,
shadowing and fast fading, N/LOS links

TX powers: 46 dBm (BS), 24 dBm
(SC), 23 dBm (MUE/SUE)

20 MHz bandwidth @ 2 GHz

No user scheduling, power control

Averages over channel realizations and
UE locations

TDD UL/DL cycles of equal length
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Downlink spectral area efficiency regions
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Downlink spectral area efficiency regions
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Downlink spectral area efficiency regions
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Downlink spectral area efficiency regions
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Downlink spectral area efficiency regions
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Uplink spectral area efficiency regions
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Observations

Increasing the number of antennas at each device leads to tremendous performance
improvements for all duplexing schemes (N = 20→ 100,F = 1→ 4, FDD):

+200 % BS UL, +150 % BS DL, +100 % SC UL, +50 % SC DL

TDD channel reciprocity allows for intra-tier interference reduction (α, β : 0→ 1):

+50 % BS DL, +30 % SC DL

Even a few “excess” antennas at the SCs leads to significant gains.

With the proposed precoding scheme, a TDD co-channel deployment of BSs and
SCs leads to the highest area spectral efficiency (α = β = 1, 20 MHz bandwidth):

DL UL

total 7.63 Gb/s/km2 (382 b/s/Hz/km2) 8.93 Gb/s/km2 (447 b/s/Hz/km2)
per MUE 38.2 Mb/s 25.4 Mb/s
per SUE 84.8 Mb/s 104 Mb/s

As the scheme is fully distributed and requires no data exchange between the
devices, the rates can be simply increased by adding more antennas to the BSs/SCs
or increasing the SC-density.
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Discussion

Channel reciprocity requires:

I Hardware calibration
I Scheduling of UEs on the same resource blocks in subsequent UL/DL cycles

The network-wide TDD protocol requires tight synchronization of all devices:
I GPS (outdoor)
I NTP/PTP (indoor)
I BS reference signals

Channel estimation will suffer from interference and pilot contamination.

Covariance matrix estimation becomes difficult for large N.

We have considered a worst case model with fixed cell association, no power control
or scheduling. Location-dependent user scheduling and interference-temperature
power control could further enhance the performance.
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Massive MIMO for wireless backhaul

small cell
wireless backhaul

wireless datawired backhaul

user equipment

massive MIMO
  base station

Core network

The unrestrained SC-deployment “where needed” rather than “where possible”
requires a high-capacity and easily accessible backhaul network.

Already for most WiFi deployments, the backhaul capacity (10–100 Mbit/s) and not
the air interface (54–600 Mbit/s) is the bottleneck.

Why not provide wireless backhaul with massive MIMO?3

3
T. L. Marzetta and H. Yang, “Dedicated LSAS for metro-cell wireless backhaul - Part I: Downlink,” Bell Laboratories, Alcatel-Lucent,

Tech. Rep., Dec. 2012.
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Massive MIMO for wireless backhaul: Advantages

No standardization or backward-compatibility required

BS-SC channels change very slowly over time:

I Complex transmission/detection schemes (e.g., CoMP) can be easily implemented.

I Even FDD might be possible due to reduced CSI overhead.

Provide backhaul where needed:

I Adapt backhaul capacity to the load

I Statistical multiplexing opportunity to avoid over-provisioning of backhaul

SCs require only a power connection to be operational

Line-of-sight not necessary if operated at low frequencies
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Massive MIMO for wireless backhaul: Is it feasible?

How many antennas are needed to satisfy the desired backhaul rates with a given
transmit power budget?

Assumptions:

Every BS knows the channels to all SCs.

The BSs can exchange some control information.

Full user data sharing between the BSs is not possible.

Single-antenna SCs, BSs with N antennas

TDD operation on a separate band (2/3 DL, 1/3 UL)

Same modeling assumptions as before

Find the smallest N such that the power minimization problem with target SINR
constraints for the multi-cell multi-antenna wireless system is feasible.4,5

4
H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell multi-antenna wireless system,” IEEE Trans. Wireless Commun.,

vol. 9, no. 5, pp. 1748–1759, May 2010.
5

S. Lakshminarayana, J. Hoydis, M. Debbah, and M. Assaad, “Asymptotic analysis of distributed multi-cell beamforming, in IEEE
International Symposium in Personal Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, Sep. 2010, pp. 2105–2110.
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Massive MIMO for wireless backhaul: Numerical results
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Summary

Massive MIMO and SCs have distinct advantages which complement each other:

I Massive MIMO for coverage and mobility support

I SCs for capacity and indoor coverage

TDD and the resulting channel reciprocity allow every device to fully exploit its
available degrees of freedom for intra-/inter-tier interference mitigation.

A TDD co-channel deployment of massive MIMO BSs and SCs can achieve a very
attractive rate region.

Massive MIMO BSs can provide wireless backhaul to a large number of SCs. The
slowly time-varying nature of the BS-SC channels might allow for complex precoding
and detection schemes.

For more details:

J. Hoydis, K. Hosseini, S. ten Brink, and M. Debbah, “Making Smart Use of Excess Antennas:
Massive MIMO, Small Cells, and TDD,” Bell Labs Technical Journal, vol. 18, no. 2, Sep. 2013.
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Thank you!
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